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Temporal structures in shell models
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The intermittent dynamics of the turbulent Gledzer, Ohkitani, and Yamada shell-model is completely char-
acterized by a single type of burstlike structure, which moves through the shells like a front. This temporal
structure is described by the dynamics of the instantaneous configuration of the shell amplitudes, revealing an
approximate chaotic attractor of the dynamics.
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I. INTRODUCTION

One of the main goals in current turbulence research i
understand the effect of intermittency in turbulence. It h
long been known that intermittency produces corrections
the classical Kolmogorov25/3 scaling law, and to othe
moments of the energy spectrum in the inertial range@1,2#.
Still, very little is known about the intense intermittent stru
tures found in turbulent flows@3#.

Over the last decade turbulent shell models have b
studied intensively because of their simplicity, and the exc
lent agreement of their statistics in comparison with those
experimentally measured turbulence@4–9#. Among the large
numbers and types of different shell models the present w
is based on the successful standard GOY shell model na
after Gledzer, Ohkitani, and Yamada@4,5#. In a way this
model reproduces the statistics of real intermittent turbule
far better than expected from its simplicity, and therefore
choice of the GOY model to model turbulence will not b
questioned here.

Accepting the good statistical properties of the mode
question arises: What mechanism generates the intermi
behavior of the model? Benziet al. @10# used a closure ap
proach to answer this question, but this paper will follo
another approach: Shell models have usually been viewe
high-dimensional systems, and have therefore been desc
by their statistical properties. However, the total number
free variables is normally only around 40, and this make
possible to view shell models as low-dimensional syste
and to analyze them using a dynamical system appro
Recently temporal structures, naturally arising in shell m
els, were thoroughly studied@11,12# and the approach of thi
paper will be a dynamical-system analysis of the coher
temporal structures found in the GOY model. Because of
intense dynamics during the temporal structures, they wil
called bursts. It should be stressed that the purpose of v
ing the model as a low-dimensional dynamical system
only to reveal the nature of its intermittent dynamics a
nothing else. In the following the analysis has no dire
physical relevance, since it is used only to understand
dynamics of the GOY model better. Once the intermitten
of the GOY model is fully understood, it may inspire a bet
understanding of real intermittency found in turbulence.

The paper is organized as follows: Section II gives a
tailed description of the bursts of the standard GOY mod
Section III shows that an approximate chaotic attractor of
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model exists, expressed by the collective dynamics of
neighboring shells.

II. GOY MODEL

All shell models simulate the flow of energy throug
wave number space in fully developed turbulence. The m
els consist of a system of coupled ordinary differential eq
tions, where the energy is injected into low wave numbers
a constant forcing term. The energy then cascades up to
high wave numbers by means of a coupling term, where
dissipated away by a viscosity term.

A. Construction

In the GOY model wave-number space is divided intoN
separate shells with characteristic wave numberskn5k0ln

(l52) wheren51, . . . ,N, andk0 is a constant determining
the smallest wave number in the model. Each shell is
signed a complex amplitudeun which can be imagined as th
velocity difference on a scalel n51/kn . By assuming a con-
servation of phase space, energy and helicity, and inte
tions among the nearest and next nearest neighbor shells
can arrive at the following set of evolution equations@5,7,9#:

S d

dt
1nkn

2Dun5 iknS un11* un12* 2
d

2
un21* un11*

2
12d

4
un22* un21* D1 f dn,4 , ~1!

with boundary conditionsu215u05uN115uN1250, and
constant forcingf on the fourth shell.

Set ~1! of N coupled ordinary differential equations
numerically integrated by standard techniques@12#. In the
simulations, we use the following standard valuesd51/2,
N519, n51026, k05224, and f 5(11 i )30.005 as found
in earlier work@8,6,7,9#. Since the present work is based o
the standard GOY model, all the basic properties and ch
acteristics of the model, such as time scales, transitions,
are found in the former references. As a result time will
measured in natural units~n.u.! arising directly from the in-
tegration of the model.

B. Conservation laws, fixed points, and invariance

The strength of the shell models relates to their simplic
of construction, which can be justified because they poss
©2001 The American Physical Society14-1
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FRIDOLIN OKKELS PHYSICAL REVIEW E 63 056214
the same conservation laws and invariants as the Nai
Stokes equations, i.e., the basic equations governing
dynamics. As for other shell models, the GOY model exh
its these conservation laws in the absence of forcing
viscosity (f 5n50), reducing the right side of Eq.~1! to a
coupling term.

The conservation of phase space is enforced as the
pling term does not containun . The remaining conserve
quantities are quadratic, i.e., they can be written in the fo
Qa5(kn

auunu2. Using the relation1
2 (u̇n

2)5unu̇n , and insert-
ing Qa into the model, the coupling term becomes thr
terms of three successive amplitudes multiplied togeth
Comparing these three terms gives the following relation
a: 12d2a2(12d)22a50, with two solutionsa50 and
a52 lnl(d21). The first (a50) corresponds to the conse
vation of energy, and the other to helicity conservation in
case of three-dimensional turbulence (d,1) and to enstro-
phy conservation in the case of two-dimensional turbule
(d.1) @7,8,12#.

The fact that the coupling term multiplied byun gives
three terms, all similar within prefactors and displaceme
in indices, makes the dynamics of the model invariant to
following changes in the complex amplitude phase:

un→eiaun

un11→eib2aun11

un12→ei (2b)un12

J wheren modulus 351, ~2!

anda andb are free parameters@13#. This invariance affects
not only the phases but also the full dynamics of the mod
since every third shell tends to follow the same behav
@12#.

Thinking of the GOY model as a dynamical system,
basic thing to study is the fixed points of the model:u̇n
50, n51 . . .N. Again, requiring an inviscid and unforce
model (f 5n50) gives two nontrivial scaling fixed points
un5kn

2zg(n), with z5 1
3 and 1

3 @12 lnl(d21)#, whereg(n) is
an arbitrary function of period 3 inn coming from the in-
variance of the model. The first fixed pointun;kn

21/3g(n)
corresponds to the Kolmogorov2 5

3 scaling law, and will be
called the Kolmogorov fixed point; while the other solutio
results in an alternation of the amplitudes@8,12#. In spite of
the simplicity of the the Kolmogorov fixed point, it plays
crucial role in the later analysis of the model.

III. DYNAMICS OF THE MODEL

At large time scales the dynamics of the model may se
stochastic, but as the time span is refined distinct sp
emerge, and in the end the dynamics is noiseless and
resolved even during the most dramatic changes. To obs
the general behavior we monitoruun(t)u as a function of
time, and due to large variations in magnitude it is shown
a semilogarithmic plot in Fig. 1. The higher shells have
smallest absolute value and the fastest variations while
lower shells have large absolute values and vary ove
longer time span. Two main features stand out from Fig
All the higher shells evolve in a synchronized manner, a
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the evolution follows a general pattern of strong bursts int
changed with oscillatory relaxation. During the evolution
the model, bursts occur randomly in time with great var
tions in their strength.

A. Organization of shell dynamics

The synchronization of the different shells is a result
the coupling between the shells, causing the model to s
organize into the types of behavior seen in Fig. 1. The or
nization in the model is shown most clearly by the loc
two-point complex correlation function, measuring how t
dynamics of a given shell is correlated to its neighborhood
both shells and in time. It is defined, using the two shortc

U05Un0
~ t !, UD5Un01Dn~ t1Dt !,

by

G~Dt,Dn!5C~U0 ,UD!5
U0* •UD2U0* •UD

A~ uU0
2u2uU0u2!~ uUD

2 u2uUDu2!

,

~3!

and where the averages are taken over time.
The information gained fromuG(Dt,Dn)u is divided into

two parts: First, only the norm of the complex amplitudes
correlated, replacingU0 and UD by their norms. This is
shown on the left side of Fig. 2 as a contour plot, where
dark area shows the strongest normalized correlation. Sec
the full complex amplitudes are correlated, and shown in
same manner on the right side of Fig. 2. Both correlatio
haven0515, and are averaged over 40.000 n.u., and co
spond roughly to a time-span of approximately 4000 succ
sive bursts.

The left plot shows that all the amplitudes in the mod
are strongly correlated from the forcing at the fourth shell
to the highest shells. This strong correlation is due to
organization of the amplitude dynamics during both burs
and the succeeding strong oscillations. The same plot
shows the motion of the burst through the shells by the ti
shift of the correlation peaks for increasingDn. When taking

FIG. 1. A typical evolution of the norm of the amplitude
uu1u . . . uu18u in time of natural units.
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TEMPORAL STRUCTURES IN SHELL MODELS PHYSICAL REVIEW E63 056214
the amplitude phases into account, the correlation func
changes radically, as seen on the right plot. Now only ev
third amplitude is correlated, as a result of the period-3
variance of the model: From the invariance@Eq. ~2!# it is
always possible to change the phases ofun11(t), un12(t) (n
modulus 351) by varyingb, while keeping the dynamics o
un(t) fixed. As a result only correlations between every th
complex amplitude can arise. It should be noted that
correlations of this section serve as pure data-series ana
and should not be interpreted as a stochastic descriptio
the model.

Figure 2 also shows how the characteristic time sc
changes among the different shells. This is seen by the ex
of the correlation peaks in time, which decreases with
shell number. When relating the characteristic time scale
the turnover time (tn), this dependence comes direct-fro
dimensional analysis@1#.

B. Front motion during burst

The motion of bursts is a part of a more general motion
different organizations of the amplitudes traveling with e
ponentially increasing speed from the lower shells tow
the higher shells, where they vanish because of visco
@11#. A way to see this is to look at the changes in t
instantaneous amplitude spectre during the motion of a bu
This is shown in Fig. 3 by snapshots of lnuun(t)u vs n, where
the time between snapshots decreases by a factor of 1A2,
giving roughly an equidistant motion of the burst. As for a
other bursts Fig. 3 reveals that the burst travels through
shells as a front, keeping the same overall shape in the i
tial subrange. Just at the maximum rise of the amplitudes,
overall scaling exponent of the inertial range is a bit low
than the Kolmogorov scaling law shown by the dashed l
in Fig. 3. Immediately after the last snapshot, all the sh
enter the oscillatory state.

C. Real-valued model

When decomposing the amplitudes in polar coordina
(un5r neiun) the dynamics of the model depends critically
sums of three successive phases:un1un111un12 @10,12#. It
turns out that this sum stays very close to2f for all shells
participating in a burst, and as a consequence the effec

FIG. 2. The two-point correlation in shells and time of natu
units, first for the norm of the amplitudes and second for the p
amplitudes, based at the 15th shell.
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the complex phases vanishes during bursts@12#. This makes
it possible to base the following analysis on a real-valu
version of the GOY model, having real-valued amplitud
defined originally asr n5uunu, with no conjugations and ‘‘
21’’ instead of ‘‘i ’’ in front of the coupling term:

S d

dt
1nkn

2D r n52knS r n11r n122
1

4
r n21r n112

1

8
r n22r n21D

1 f dn,4 . ~4!

Although r n in Eq. ~4! originates from the polar decompos
tion of un , it will be both positive and negative during th
dynamics of Eq.~4!, but this is nothing but a discrete phas
invariance since Eq.~2! still holds for Eq.~4! with a andb
being whole multiples ofp. To justify the real-valued
model, Fig. 4 shows the evolution of Eq.~4! with r n as a
function of time to the left and log(urnu) as a function of time
to the right. The only radical change caused by abandon
the complex phases of the standard GOY model is that
dynamics becomes periodic in time. However, this will be
no concern, since we will be concentrating on the dynam
during bursts. Note the similarity between the right side
Figs. 4 and 1, especially during bursts, which justifies the
of Eq. ~4! in the following analysis.

To summarize this first part of this paper we have o
served that the dynamics of the GOY-shell model is dom
nated by strong bursts moving up through the shells lik
front, thus creating strong correlations~among the shells of

l
e

FIG. 3. Snapshots of loguunu during thecascadeof a burst.

FIG. 4. The evolution of the real-valued GOY model.
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FRIDOLIN OKKELS PHYSICAL REVIEW E 63 056214
the model!. The next part of the paper will concentrate on t
mechanism creating these bursts.

IV. LOCAL VARIABLES

Making an analogy to real turbulence, we have seen
bursts ‘‘cascade’’ nearly unaffected up through the sh
like a front. If for the moment we assume these fronts to
unaffected during a cascade, then the coupling term for e
shell will experience the same action from its neighbor
shells as a burst passes through, and thus they will prod
the same reaction on the dynamics of the corresponding s
participating in the burst. This indicates that a full unde
standing of bursts may be revealed by simply analyzing
behavior of a single generic coupling term during the pass
of a burst.

To begin, we observe that the coupling term depends o
on the instantaneous configuration of the neighboring sh
and has no explicit dependence on the present or past s
Then, if we restrict ourselves to the inertial range, neglect
forcing and viscosity, the neighboring shells may thus
seen asa local phase spaceof a shell, since their configura
tion through the coupling term exactly determines the inst
taneous dynamics (ṙ n) of the amplituder n . To characterize
this local phase space, each set of neighboring shells wi
called local shells, LW n5(r n22 ,r n21 ,r n11 ,r n12) of the nth
shell, and should not be seen as a part of the other amplit
but rather as an isolated set of variables determiningṙ n .

The configuration ofLW n will be described by first choos
ing the slope of lnl(LWn), which is nothing but the local scal
ing exponent at thenth shell. To continue, we define

hW n[ lnl~LW n!, ~5!

and choose the mean, curvature, and third order compo
of hW n . This gives the local variables. PW n
5(An ,Bn ,Cn ,Dn) of r n , defined as the coefficients of th
projection ofhW n on the orthogonal basis given by the matr
T:

hW n5T•PW n , LW n52hW n, ~6!

where

T5S a 2b 2a b

a b a 22b

a 2b a 2b

a 22b 2a 2b

D , ~7!

anda51/4 andb51/10.
The basis of the local variables is plotted in Fig. 5, sho

ing how it can be characterized as a simple ‘‘Taylor-serie
expansion ofhW n . These variables are believed to be the rig
variables to monitor the dynamics of the model, since th
globally describe the configuration of the local shells inste
of focusing on the individual neighboring shells. The loc
scaling of shell models was studied earlier@9,8#, but this is
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an instantaneous local scaling averaged over all shells
using a coarse-grained time resolution.

A. Application to the model

To implement Eqs.~6! and~7! into the model, we assum
that the components ofhW n behave smoothly inn such that
r n'2An, giving

ṙ n52kn22AnS 23Bn2Dn2
d

2
222Cn2

12d

4
223Bn1DnD

2nkn
22An. ~8!

Equation~8! gives direct evidence of the period-3 invarian
of the model: Since the dynamics only depends on the c
binations (3Bn2Dn ,Cn ,An), we defineEn[3Bn2Dn . The
model is then invariant to the orthogonal component ofEn :
'En53Dn1Bn which is nothing but a period-3, behavior a
seen in Fig. 6.

From the construction of Eq.~8! it should be noted tha
the sign ofṙ n , and thereby the monotony of the dynamics,
only a function ofEn andCn when neglecting the viscosity
term. BecauseAn is outside the brackets it affects the r
sponse time of the dynamics. Now the dynamics of thenth
amplitude can be determined only by three local variable

VW n5~En ,Cn ,An!.

Even though this new set of local variables (VW n) forms an
efficient phase space, it should not be confused with the
tual 2N-dimensional phase space of the free variables in
model.

FIG. 5. The basis of the local variables, presented graphically

FIG. 6. Graphical presentation ofEn ,'En , showing the
period-3 invariance of the model.
4-4
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B. Local attractor of the model

SinceVW n is a local phase space the trajectory ofVW n(t) in
time will describe athree-dimensional local attractorof the
nth shell dynamics. Figure 7 shows the local attractor of
14th shell during a time span of two successive bursts, wh
some additional features are placed to explain the dynam
of the attractor in detail.

First we note that the trajectory is projected down on
(En ,Cn) plane to help give a three-dimensional understa
ing of the attractor. Then we focus on the vertical line whi
corresponds to the Kolmogorov fixed point given
(En ,Cn ,AN)5(21,0,•). After every burst the trajectorie
encircle this line during the relaxations. As the oscillatio
die out the dynamics slows down, making the trajector
stay close to the region ofṙ n'0 in VW n . In Fig. 7 the curved
sheet is the manifold ofṙ n50 derived from Eq.~8!, and it is
seen how the trajectory stays close to the manifold~note that
the trajectory is shown thinner for negativeṙ n).

When a burst approaches from the lower shells it affe
the configuration of local shells, forcing the trajectory aw
from the manifold. This causesṙ n , and therebyr n , to in-
crease rapidly, making the shell participate in the burst. D
ing the burst the trajectory approaches the Kolmogo
fixed-point line around which it begins to circle again, e
The same behavior repeats itself throughout the evolutio
the model,making the local attractor capture all the gener
dynamics of the model.

Every other shell participating in the burst has quali
tively the same local attractor with the same characterist
and contrary to the energy spectrum of the model the lo
attractor is not affected by period-3 variations, since they
removed by the construction of the local variablesVW n . It
should be noted that if the viscous term affects only the
shells, completely abandoning the inertial range, the mo
will still produce bursts, and in this case the oscillations w
not bend off but follow the Kolmogorov fixed-point straigh

FIG. 7. The local attractor of the 14th shell and its projection

a (En ,Cn) plane together with the surface ofṙ n50, the Kolmog-
orov fixed-point line, and arrows of characteristic flow.
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down until the next burst is approached.
Since the analysis of local variable is based on the re

valued GOY model@Eq. ~4!#, it is appropriate to check the
similarities between the local attractors of the standard-
the real-valued models. Figure 8 shows the local attracto
the real-valued model together with some of the same
tures as for the local attractor of the complex model in Fig
Comparing the two local attractors, it is seen that they sh
the same characteristics, both with respect to the ove
shape of the local attractors and the oscillations around
Kolmogorov fixed-point line. The profound spikes seen
the local attractor of the real-valued model~Fig. 8! corre-
spond to the amplitudesr n crossing zero, and thus cause t
related local variables to diverge momentarily. The simila
ties between the two local attractors justify the analysis
the standard GOY model by local variables. It should
noted that the trajectory of the real-valued local attracto
closed because of the periodicity of the dynamics.

V. CAUSE OF INTERMITTENCY

From the behavior of the local attractor it is possible
explain the intermittent shift between bursts and oscillat
relaxation, creating the intermittent behavior of the mod
What is needed is answers to the following two questio
Why is the manifold ofṙ n50 stable, attracting the oscilla
tory state into a relaxing period? What changes this stab
as a burst approaches?

A. Creation of the relaxing period

To analyze the stability of the manifold we have to kno
the flow in the phase spaceVW n , and this will be done by
estimatingȦn ,Ėn ,Ċn . First we again assumer n'2An, to
obtain ṙ n' ln(2)2AnȦn , which will be used to estimateȦn .
Then we insertȦn into the transformations of Eq.~6!, ob-
taining Ėn andĊn as function ofȦn1 j , j 5$22,21,1,2%. To

FIG. 8. The local attractor of the 14th shell for the real-valu
GOY model, its projection on a (En ,Cn) plane, and the Kolmog-
orov fixed-point line.
4-5
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FRIDOLIN OKKELS PHYSICAL REVIEW E 63 056214
proceed we note that because of the regular dynamics du
oscillations, all the local variables for the different shells a
roughly equal despite a Kolmogorov scaling of the me
values (An). This makes us assume the following conditi
between the local variables:

~An1 j ,En1 j ,Cn1 j !'S An2
j

3
,En ,CnD , j 5$22,21,1,2%.

~9!

When inserted into the differentȦn1 j ’s, this causesĖn and
Ċn to resembleȦn within prefactors in front of the coupling
and viscous terms.As a result the monotony of E˙

n and Ċn

follows that of Ȧn .
Now the general flow inVW n depends only on the sign o

ṙ n , changing at the manifold and indicated by the arro
shown in Fig. 7. From the orientation of the flow and t
position of the manifold the trajectory is caused to close
on the manifold and to drift slowly downward, creating
relaxing period.

B. Bursts

The stability of the manifold and thereby of the relaxin
state depends critically on the condition of Eq.~9! used in
the derivation above. The thing that destroys this conditio
the approach of a burst from the lower shells, affecting o
r n22 andr n21. The manifold then loses its stability, and th
state is forced into a region of strong positiveṙ n making the
shell participate in the burst. Now, asr n changes violently, it
causes the manifold of the higher shells to become unsta
etc., and thusthe burst spreads through the shells because
a chain reaction.

To summarize the last part of this paper, we have s
that the basic behavior of the GOY model may be captu
by the dynamics of a three-dimensional attractor. This com
05621
ng
e
n

s

n

is
y

le,
f

n
d
s

from expressing the dynamics of the model in a set of va
ables~local variables! which are based on a global descri
tion of the neighboring shell amplitudes entering the co
pling terms. With these local variables the intrinsic period
invariance of the model naturally drops out, and the role
the Kolmogorov scaling-law solution becomes apparent
the trajectory of the local variables oscillates around it
long periods of time.

VI. CONCLUSION

In this paper the standard GOY shell model has been a
lyzed on the basis of its dynamics rather than its statistics
detailed analysis of the time evolution reveals the followin

The dynamics of the model follows two different stat
where violent bursts are interchanged with an oscillatory
laxing state. It is shown that the dynamics of the shells
mutually correlated, and that the bursts travel through
shells like a front. Because bursts in the model casc
nearly unaffected through the shells in the inertial ran
each set of neighboring shells entering the coupling te
can be seen as local phase spaces of the corresponding s
and when expressed in a simple ‘‘Taylor series’’ base th
dynamics describes an approximate attractor of the mod

With the analysis of local variables and the resulting lo
attractor of the GOY model, it is shown that the intermitte
behavior of the GOY model can be fully explained from
dynamical-system point of view.

ACKNOWLEDGMENTS

I would like to thank the following people for fruitful
discussions concerning this work: Ken Haste Andersen,
cob Sparre Andersen, Tomas Bohr, Jesper Borg, Paolo
ratore Ginanneschi, Martin van Hecke, Anders Johans
Jens Juul Rasmussen, Bjarne Stenum, and my super
Mogens Ho”gh Jensen.
D

en,
,

@1# U. Frisch,Turbulence: The legacy of A. N. Kolmogorov~Cam-
bridge University Press, Cambridge, England, 1995!.

@2# A.N. Kolmogorov, C. R. Acad. Sci. URSS30, 301~1941!; 32,
16 ~1941!.

@3# F. Belin, J. Maurer, P. Tabeling, and H. Willaime, J. Phys. II6,
1 ~1996!.

@4# E. B. Gledzer, Dokl. Akad. Nauk. SSSR209, 1046 ~1973!
@Sov. Phys. Dokl.18, 216 ~1973!#.

@5# M. Yamada and K. Ohkitani, J. Phys. Soc. Jpn.56, 4210
~1987!; Prog. Theor. Phys.79, 1265~1988!.

@6# M.H. Jensen, G. Paladin, and A. Vulpiani, Phys. Rev. A43,
798 ~1991!.

@7# L. Kadano, D. Lohse, J. Wang, and R. Benzi, Phys. Fluids7,
617 ~1995!.
@8# T. Bohr, M. H. Jensen, G. Paladin, and A. Vulpiani,Dynami-

cal system Approach to Turbulence~Cambridge University
Press, Cambridge, England, 1998!.

@9# L. Biferale, A. Lambert, R. Lima, and G. Paladin, Physica
80, 105 ~1995!.

@10# R. Benzi, L. Biferale, and G. Parisi, Physica D65, 163~1993!.
@11# T. Dombre and J.-L. Gilson, Physica D111, 265 ~1998!.
@12# F. Okkels, Master’s thesis, CATS, University of Copenhag

Denmark, 1997~unpublished!; F. Okkels and M.H. Jensen
Phys. Rev. E57, 6643~1998!.

@13# O. Gat, I. Procaccia, and R. Zeitak, Phys. Rev. E51, 1148
~1995!.
4-6


