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Temporal structures in shell models
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The intermittent dynamics of the turbulent Gledzer, Ohkitani, and Yamada shell-model is completely char-
acterized by a single type of burstlike structure, which moves through the shells like a front. This temporal
structure is described by the dynamics of the instantaneous configuration of the shell amplitudes, revealing an
approximate chaotic attractor of the dynamics.
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[. INTRODUCTION model exists, expressed by the collective dynamics of the
neighboring shells.
One of the main goals in current turbulence research is to

understand the effect of intermittency in turbulence. It has Il. GOY MODEL
long been known that intermittency produces corrections to
the classical Kolmogorov-5/3 scaling law, and to other
moments of the energy spectrum in the inertial rahé&].
Still, very little is known about the intense intermittent struc-
tures found in turbulent flowg3].

All shell models simulate the flow of energy through
wave number space in fully developed turbulence. The mod-
els consist of a system of coupled ordinary differential equa-
tions, where the energy is injected into low wave numbers by
a constant forcing term. The energy then cascades up to the

O_ver_the Ia.lSt decade turbulen_t s_heII .mOdeIS have bee igh wave numbers by means of a coupling term, where it is
studied intensively because of their simplicity, and the excel'fjissipated away by a viscosity term

lent agreement of their statistics in comparison with those o
experimentally measured turbuleriée-9]. Among the large
numbers and types of different shell models the present work
is based on the successful standard GOY shell model named In the GOY model wave-number space is divided ihto
after Gledzer, Ohkitani, and Yamad4,5]. In a way this separate shells with characteristic wave numbersko\"
model reproduces the statistics of real intermittent turbulencé\ =2) wheren=1, ... N, andkg is a constant determining
far better than expected from its simplicity, and therefore thghe smallest wave number in the model. Each shell is as-
choice of the GOY model to model turbulence will not be sighed a complex amplitudg, which can be imagined as the
guestioned here. velocity difference on a scalg=1/k,. By assuming a con-
Accepting the good statistical properties of the model, aservation of phase space, energy and helicity, and interac-
guestion arises: What mechanism generates the intermittetions among the nearest and next nearest neighbor shells, one
behavior of the model? Benei al. [10] used a closure ap- can arrive at the following set of evolution equatigfsr,9]:
proach to answer this question, but this paper will follow
another approach: Shell models have usually been viewed as
high-dimensional systems, and have therefore been described
by their statistical properties. However, the total number of
free variables is normally only around 40, and this makes it _ 1;5u* u*
possible to view shell models as low-dimensional systems 4 “n-zrn-l
and to analyze them using a dynamical system approach.. .
Recently temporal structures, naturally arising in shell modWith boundary conditionsu_; =up=uy+;=Uy+,=0, and
els, were thoroughly studigd 1,17 and the approach of this constant forcing on the fourth shell. , o
paper will be a dynamical-system analysis of the coherent S€t(1) of N coupled ordinary differential equations is
temporal structures found in the GOY model. Because of theUmerically integrated by standard techniq#g]. In the
intense dynamics during the temporal structures, they will bgimulations, we use the following standard valubs 1/2,

called bursts. It should be stressed that the purpose of viewt = 19; v=10"° Kko=2"* andf=(1+i)>0.005 as found

ing the model as a low-dimensional dynamical system idn earlier work[8,6,7,9. Since the present work ?s based on
only to reveal the nature of its intermittent dynamics andthe standard GOY model, all the basic properties and char-

nothing else. In the following the analysis has no directacteristics of the model, such as time scales, transitions, etc.,

physical relevance, since it is used only to understand thé"® found in the former references. As a result time will be

dynamics of the GOY model better. Once the intermittencyMe@sured in natural units.u) arising directly from the in-

of the GOY model is fully understood, it may inspire a bettert€gration of the model.

understanding of real intermittency found in turbulence.
The paper is organized as follows: Section Il gives a de-

tailed description of the bursts of the standard GOY model. The strength of the shell models relates to their simplicity

Section Il shows that an approximate chaotic attractor of thef construction, which can be justified because they possess

A. Construction

dt 2

2 i * * * *
e an) un"kn( UnyUni2™ 5UpqUnyg

+ f5n,41 (1)

B. Conservation laws, fixed points, and invariance
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the same conservation laws and invariants as the Naiver T ' : —

|

i

Stokes equations, i.e., the basic equations governing fluic 7?2 E a0 WR\%{(/:
dynamics. As for other shell models, the GOY model exhib- .\/\/\ﬂ ’“"“"J
its these conservation laws in the absence of forcing anc 1o~ 4} h'
viscosity (f=v=0), reducing the right side of Eql) to a

coupling term. = 10~ -
The conservation of phase space is enforced as the col= .

pling term does not contain,. The remaining conserved 10781 .

guantities are quadratic, i.e., they can be written in the form 3

Q.==k% up|?. Using the relatiors (42) =unu,, and insert- 10710 7

ing Q, into the model, the coupling term becomes three

terms of three successive amplitudes multiplied together. 10 "G .00 N i

Comparing these three terms gives the following relation on 0 5 0 13 20 23 30

a: 1—82%—(1-6)22%=0, with two solutionsa=0 and Time (n-u.)

a=—In\(6—1). The first (¢=0) corresponds to the conser- |G, 1. A typical evolution of the norm of the amplitudes

vation of energy, and the other to helicity conservation in thgy,| .. .|u,4 in time of natural units.

case of three-dimensional turbulenc&<(1) and to enstro-

phy conservation in the case of two-dimensional turbulencehe evolution follows a general pattern of strong bursts inter-

(6>1) [7,8,12. changed with oscillatory relaxation. During the evolution of
The fact that the coupling term multiplied hy, gives  the model, bursts occur randomly in time with great varia-

three terms, all similar within prefactors and displacementsions in their strength.

in indices, makes the dynamics of the model invariant to the

following changes in the complex amplitude phase:

A. Organization of shell dynamics

u,—e'“u, The synchronization of the different shells is a result of

the coupling between the shells, causing the model to self-

i-8) organize into the types of behavior seen in Fig. 1. The orga-
Upi2—€ Un+2 nization in the model is shown most clearly by the local

two-point complex correlation function, measuring how the

anda andp are free parametef43]. This invariance affects dynamics of a given shell is correlated to its neighborhood of

not only the phases but also the full dynamics of the modelpoth shells and in time. It is defined, using the two shortcuts

since every third shell tends to follow the same behavior

[12]. Uo=Up,(t),  Us=Up s an(t+A),

Thinking of the GOY model as a dynamical system, a
basic thing to study is the fixed points of the modé,L: by
=0, n=1...N. Again, requiring an inviscid and unforced

Ups1—€P Uy wheren modulus 3=1, (2)

model (f=v=0) gives two nontrivial scaling fixed points: Ug-Ua—Ug - U,

u,=Kk;, “g(n), with z= 3 and3[1—In,(6—1)], whereg(n) is  TI'(At,An)=C(Ug,U,)= ,
an arbitrary function of period 3 im coming from the in- \/(|U§|—|Uo|2)(|U§|—|UA|2)
variance of the model. The first fixed point~k, “g(n) 3

corresponds to the Kolmogorov 3 scaling law, and will be .
called the Kolmogorov fixed point; while the other solution and where the averages are taken over time.

results in an alternation of the amplitudés12]. In spite of The information gained fronl’(At,An)| is divided into
the simplicity of the the Kolmogorov fixed point, it plays a two parts: First, only the norm of the complex amplitudes is
crucial role in the later analysis of the model. correlated, replacindJ, and U, by their norms. This is

shown on the left side of Fig. 2 as a contour plot, where the
dark area shows the strongest normalized correlation. Second
the full complex amplitudes are correlated, and shown in the
At large time scales the dynamics of the model may seensame manner on the right side of Fig. 2. Both correlations
stochastic, but as the time span is refined distinct spikeBaveny=15, and are averaged over 40.000 n.u., and corre-
emerge, and in the end the dynamics is noiseless and fullgpond roughly to a time-span of approximately 4000 succes-
resolved even during the most dramatic changes. To obsergive bursts.
the general behavior we monitdu,(t)| as a function of The left plot shows that all the amplitudes in the model
time, and due to large variations in magnitude it is shown byare strongly correlated from the forcing at the fourth shell up
a semilogarithmic plot in Fig. 1. The higher shells have theto the highest shells. This strong correlation is due to the
smallest absolute value and the fastest variations while therganization of the amplitude dynamics during both bursts,
lower shells have large absolute values and vary over and the succeeding strong oscillations. The same plot also
longer time span. Two main features stand out from Fig. 1shows the motion of the burst through the shells by the time
All the higher shells evolve in a synchronized manner, andhift of the correlation peaks for increasing. When taking

Ill. DYNAMICS OF THE MODEL
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amplitudes, based at the 15th shell.

the amplitude phases into account, the correlation function
changes radically, as seen on the right plot. Now only every
third amplitude is correlated, as a result of the period-3 in
variance of the model: From the invariandgq. (2)] it is
always possible to change the phasesof;(t), u,.»(t) (n

FIG. 3. Snapshots of Idg,| during thecascadeof a burst.

‘the complex phases vanishes during bui$g. This makes
it possible to base the following analysis on a real-valued

. : ! . version of the GOY model, having real-valued amplitudes
modulus 3=1) by varyingg, while keeping the dynamics of defined originally ag,=|u,|, with no conjugations and *
un(t) fixed. As a result only correlations between every third 7. oo 4 o i in nfrontno’f the coupling term:

complex amplitude can arise. It should be noted that the
correlations of this section serve as pure data-series analysisg
and should not be interpreted as a stochastic description f(ﬁ+ Vkﬁ
the model.

Figure 2 also shows how the characteristic time scale +foh4. (4)
changes among the different shells. This is seen by the extent

of the correlation peaks in time, which dgcrgages with theAIthoughrn in Eq. (4) originates from the polar decomposi-
shell number._When reIa}mg the characteristic time scale tQn of u,, it will be both positive and negative during the
the turnover time ), this dependence comes direct-from 4 namics of Eq(4), but this is nothing but a discrete phase
dimensional analysil]. invariance since Eq2) still holds for Eq.(4) with « and 8
being whole multiples of#. To justify the real-valued
B. Front motion during burst model, Fig. 4 shows the evolution of E(}) with r,, as a

The motion of bursts is a part of a more general motion ofunction of time to the left and log) as a function of time -
different organizations of the amplitudes traveling with ex-t0 the right. The only radical change caused by abandoning
ponentially increasing speed from the lower shells towardhe complex phases of the standard GOY model is that the
the higher shells, where they vanish because of viscosit§ynamics becomes periodic in time. However, this will be of
[11]. A way to see this is to look at the changes in theN0 concern, since we W|II_b¢ concentrating on the dynam|cs
instantaneous amplitude spectre during the motion of a bursguring bursts. Note the similarity between the right side of
This is shown in Fig. 3 by snapshots ofug(t)| vs n, where Figs. 4 an_d 1, espemal_ly during b_ursts, which justifies the use
the time between snapshots decreases by a factory@, 1/ ©f EQ- (4) in the following analysis.
giving roughly an equidistant motion of the burst. As for all 10 Summarize this first part of this paper we have ob-

other bursts Fig. 3 reveals that the burst travels through the€rved that the dynamics of the GOY-shell model is domi-

shells as a front, keeping the same overall shape in the inef@ted by strong bursts moving up through the shells like a

tial subrange. Just at the maximum rise of the amplitudes, thEoNt, thus creating strong correlatiot@mong the shells of
overall scaling exponent of the inertial range is a bit lower

than the Kolmogorov scaling law shown by the dashed line o2 SRR 10
in Fig. 3. Immediately after the last snapshot, all the shells
enter the oscillatory state.

1 1
M= _kn(rn+lrn+2_ ZrnflrnJrl_ §rn72rn71

Ira(t)l

C. Real-valued model

When decomposing the amplitudes in polar coordinates ~°'°f

(u,=r,e'’) the dynamics of the model depends critically on  _, 5, SR A
sums of three successive phasgst 0,1+ 6,4, [10,12. It ° % o o 0 100 o0 o go B0 0
turns out that this sum stays very close-teb for all shells

participating in a burst, and as a consequence the effect of  FIG. 4. The evolution of the real-valued GOY model.
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the mode). The next part of the paper will concentrate onthe  ozsfe——=s 8
mechanism creating these bursts. \ A / ZT D~ - :
i of N\ / of e
IV. LOCAL VARIABLES 3 N g —oafs a o
. L ' ozhe] e
Making an analogy to real turbulence, we have seen that -ozsk - ------ 4 e s

n-2 n+1 n+1

bursts “cascade” nearly unaffected up through the shells
like a front. If for the moment we assume these fronts to be
unaffected during a cascade, then the coupling term for each FIG. 5. The basis of the local variables, presented graphically.
shell will experience the same action from its neighboring
shells as a burst passes through, and thus they will produd® instantaneous local scaling averaged over all shells and
the same reaction on the dynamics of the corresponding shelsing a coarse-grained time resolution.
participating in the burst. This indicates that a full under-
standing of bursts may be revealed by simply analyzing the
behavior of a single generic coupling term during the passing
of a burst.

To begin, we observe that the coupling term depends on

Local Shells Local Shells

A. Application to the model

To implement Egs(6) and(7) into the model, we assume
?wat the components o;f;n behave smoothly im such that

on the instantaneous configuration of the neighboring shell a~2", giving

and has no explicit dependence on the present or past states. S 1-5

Then, if we restrict ourselves to the inertial range, neglecting  r =— anZAn< 23Bn—Dn_ _9-2C,_ _____5—3B,+Dy
forcing and viscosity, the neighboring shells may thus be 2 4

seen as local phase ;pacef a shell, since thgir config_ura— ®)
tion through the coupling term exactly determines the instan-

taneous dynamicsf) of the amplituder,,. To characterize Equation(8) gives direct evidence of the period-3 invariance
this local phase space, each set of neighboring shells will bef the model: Since the dynamics only depends on the com-
called local shells L,=(rn_2,rn_1,Fns1,Mns) Of the nth  binations (B,—D,,Cy,A,), we defineE,=3B,—D,. The
shell, and should not be seen as a part of the other amplitudé&dodel is then invariant to the orthogonal componenng

but rather as an isolated set of variables determinjng L E,=3D,+ By, which is nothing but a period-3, behavior as

. . - . , seen in Fig. 6.
. The configuration ot Y‘”" F’e des.cnbed by first choos- o the construction of Ed8) it should be noted that
ing the slope of IR(L,,), which is nothing but the local scal-

) hath shell. T ) def the sign ofr,,, and thereby the monotony of the dynamics, is
Ing exponent at theth shell. To continue, we define only a function ofE,, andC,, when neglecting the viscosity

term. Because\, is outside the brackets it affects the re-

— VkﬁZAn.

m=In(Ln), ) sponse time of the dynamics. Now the dynamics ofritte
and choose the mean, curvature, and third order componeiinlfm)“tUde can be determined only by three local variables
of 7,. This gives the local variables P, V.= (E,.Cp.A,).

=(A, ,Bn,Cn,Dn) of r,, defined as the coefficients of the
projection ofnn on the orthogonal basis given by the matrix Even though this new set of local variableg o[ forms an

T: efficient phase space, it should not be confused with the ac-
R R R R tual 2N-dimensional phase space of the free variables in the
mm=T-Pn, Lp=2", (6) model.

where 05

a 28 —a B
a B a —2B of
a =28 —a —-pB —oslam——

and a=1/4 andB=1/10.

The basis of the local variables is plotted in Fig. 5, show-
ing how it can be characterized as a simple “Taylor-series”
expansion of;;n. These variables are believed to be the right
variables to monitor the dynamics of the model, since they
globally describe the configuration of the local shells instead

of focusing on the individual neighboring shells. The local
scaling of shell models was studied earlier8], but this is

FIG. 6. Graphical presentation of,,LE,, showing the
period-3 invariance of the model.

056214-4



TEMPORAL STRUCTURES IN SHELL MODELS PHYSICAL REVIEW B3 056214

FIG. 7. The local attractor of the 14th shell and its projection on  FIG. 8. The local attractor of the 14th shell for the real-valued

a (E,,C,) plane together with the surface pf=0, the Kolmog- GOY model, its projection on aH,,C,) plane, and the Kolmog-
orov fixed-point line, and arrows of characteristic flow. orov fixed-point line.

B. Local attractor of the model down until the next burst is approached.
. - ) - ) Since the analysis of local variable is based on the real-
_ SinceV,, is a local phase space the trajectonMy{t) in 51,69 GOY mode[Eq. (4)], it is appropriate to check the
time will describe ahree-dimensional local attractoof the  gimijarities between the local attractors of the standard- and
nth shell dynamics. Figure 7 shows the local attractor of thgpg rea).valued models. Figure 8 shows the local attractor of
14th shell during a time span of two successive bursts, wherg, real-valued model together with some of the same fea-
some additional features are placed to explain the dynamicgres as for the local attractor of the complex model in Fig. 7.
of the attractor in detail. ) ) ) Comparing the two local attractors, it is seen that they share
First we note that the trajectory is projected down on anhe same characteristics, both with respect to the overall
(En,Cy) plane to help give a three-dimensional understandgpane of the local attractors and the oscillations around the
ing of the attractor. Then we focus on the vertical line Wh'ChKoImogorov fixed-point line. The profound spikes seen in
corresponds to the Kolmogorov fixed point given by e |ocal attractor of the real-valued modélig. 8 corre-
(En,Cn,An)=(—1,0,). After every burst the trajectories ghqnq 1o the amplitudes, crossing zero, and thus cause the
encircle this line during the relaxations. As the oscillationsyg|ateq |ocal variables to diverge momentarily. The similari-
die out the dynamics slows down, making the trajectoriegjes petween the two local attractors justify the analysis of
stay close to the region @f,~0 in V. In Fig. 7 the curved the standard GOY model by local variables. It should be
sheet is the manifold af,=0 derived from Eq(8), and itis  noted that the trajectory of the real-valued local attractor is
seen how the trajectory stays close to the manifolite that  closed because of the periodicity of the dynamics.

the trajectory is shown thinner for negativg).
When a burst approaches from the lower shells it affects V. CAUSE OF INTERMITTENCY

the configuration of local shells, forcing the trajectory away From the behavior of the local attractor it is possible to

from the manifold. This causes,, and therebyr,, t0 in-  explain the intermittent shift between bursts and oscillatory
crease rapidly, making the shell participate in the burst. Durre|axation, creating the intermittent behavior of the model.
ing the burst the trajectory approaches the KolmogoroMyhat is needed is answers to the following two questions:
fixed-point line around which it begins to circle again, etc. hy is the manifold oﬁfn:O stable, attracting the oscilla-

;Zerﬁggqe?nggrlli?]wOthreelz?:::Salttt?:gt;Trg;gtTJ?gtatlrl]?hgvogrj]téorgl ory state into a relaxing period? What changes this stability
’ 9 P 9 as a burst approaches?

dynamics of the model

Every other shell participating in the burst has qualita-
tively the same local attractor with the same characteristics, A. Creation of the relaxing period
and contrary to the energy spectrum of the model the local To analyze the stability of the manifold we have to know
attractor is not affected by perlod—3 variations, .smcee they a'%he flow in the phase spadén, and this will be done by
removed by the construction of the local variabMs. It estimatingA, ,E, ,C,,. First we again assume,~2"n, to
should be noted that if the viscous term affects only the last =~ . : . . . -
shells, completely abandoning the inertial range, the mode(?btaln rnwln(Z)_ZAﬂAn, which will be used to estimaté,.
will still produce bursts, and in this case the oscillations will Then we insertA, into the transformations of Ed6), ob-
not bend off but follow the Kolmogorov fixed-point straight tainingE, andC,, as function oA, ;, j={—2,—-1,1,2. To
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proceed we note that because of the regular dynamics durirfgom expressing the dynamics of the model in a set of vari-
oscillations, all the local variables for the different shells areables(local variableg which are based on a global descrip-

roughly equal despite a Kolmogorov scaling of the meartion of the neighboring shell amplitudes entering the cou-
values @,). This makes us assume the following condition pling terms. With these local variables the intrinsic period-3
between the local variables: invariance of the model naturally drops out, and the role of
the Kolmogorov scaling-law solution becomes apparent as
the trajectory of the local variables oscillates around it for

(An+j Bnsj . Cnrj)~ long periods of time.

An—%,En,Cn), j={-2-1,12.
9
When inserted into the differem, . ;’s, this cause€, and

C, to resemble), within prefactors in front of the coupling-
and viscous termsAs a result the monotony of Eand G,

VI. CONCLUSION

In this paper the standard GOY shell model has been ana-
lyzed on the basis of its dynamics rather than its statistics. A
i detailed analysis of the time evolution reveals the following.
follows that of 4. A The dynamics of the model follows two different states

Now the general flow irV,, depends only on the sign of where violent bursts are interchanged with an oscillatory re-

'Fn, changing at the manifold and indicated by the arrowdaxing state. It is shown that the dynamics of the shells are
shown in Fig. 7. From the orientation of the flow and themutually correlated, and that the bursts travel through the
position of the manifold the trajectory is caused to close inshells like a front. Because bursts in the model cascade
on the manifold and to drift slowly downward, creating a nhearly unaffected through the shells in the inertial range,
relaxing period. each set of neighboring shells entering the coupling terms
can be seen as local phase spaces of the corresponding shells,

B. Bursts and when expressed in a simple “Taylor series” base their

. i ~dynamics describes an approximate attractor of the model.

The stability of the manifold and thereby of the relaxing " wjith the analysis of local variables and the resulting local
state depends critically on the condition of Hf) used in  attractor of the GOY model, it is shown that the intermittent

the derivation above. The thing that destroys this condition iehavior of the GOY model can be fully explained from a
the approach of a burst from the lower shells, affecting onlygynamical-system point of view.

rhn—» andr,_4. The manifold then loses its stability, and the

state is forced into a region of strong positiyemaking the
shell participate in the burst. Now, as changes violently, it
causes the manifold of the higher shells to become unstable, | would like to thank the following people for fruitful
etc., and thushe burst spreads through the shells because ofliscussions concerning this work: Ken Haste Andersen, Ja-
a chain reaction cob Sparre Andersen, Tomas Bohr, Jesper Borg, Paolo Mu-

To summarize the last part of this paper, we have seematore Ginanneschi, Martin van Hecke, Anders Johansen,
that the basic behavior of the GOY model may be capturedens Juul Rasmussen, Bjarne Stenum, and my supervisor
by the dynamics of a three-dimensional attractor. This comeMogens Hgh Jensen.
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